
Towards Intelligent Ensembles

Tomas Bures1,2, Filip Krijt1, Frantisek Plasil1, Petr Hnetynka1, Zbynek Jiracek1

1Charles University in Prague
Faculty of Mathematics and Physics

Prague, Czech Republic

2Institute of Computer Science
Academy of Sciences of the Czech Republic

Prague, Czech Republic

{bures, krijt, plasil, hnetynka, jiracek}@d3s.mff.cuni.cz

ABSTRACT

Recently, several ensemble-based component models have been

created to address the dynamicity and complexity of designing

cyber-physical systems. Experience in applying these models to

actual case studies has shown that there are still scenarios in

distributed organization that are hard to capture by utilizing only

the concepts of these component models. In this paper, we present

a summary of issues encountered, based on the analysis of

selected case studies. We propose new concepts that build on

those contained in ensemble-based models. In particular, we

introduce the ideas of ensemble nesting, dynamic role

cardinalities and ensemble fitness. These concepts and their

support in the runtime framework aim at serving as a bridge

between high-level ensemble formation rules and low-level

decentralized implementation. These concepts are illustrated on

one of the case studies, demonstrating a domain specific language

based on that used in the DEECo component model.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures –

Domain-specific architectures, Patterns; I.2.11 [Artificial

Intelligence]: Distributed Artificial Intelligence – Intelligent

agents.

General Terms

Algorithms, Design, Languages.

Keywords

Distributed coordination, architectural adaptation, ensemble-

based component systems, component model, emergent

architecture, component ensembles, autonomic systems.

1 INTRODUCTION

1.1 Motivation
Owing to technological and research advances, as well as the

increasing availability of connectivity and cheap computer

components on the market, a new kind of distributed systems has

emerged in the recent years. These systems are collectively

referred to as cyber-physical systems (CPS) and are a

manifestation of the Internet-of-things (IoT) initiative. Cyber-

physical systems usually consist of a set of autonomous

components that, even though capable of working in isolation,

achieve their full potential by using network communication to

cooperate with each other to fulfill a common goal. As evidenced

by various industry-driven use cases and research calls, CPS are

also of interest to the industry. In recent years, this interest is

especially growing in the area of “smart CPS” (sCPS), which are

CPS with high-level of distribution, coordination, autonomy, and

self-adaptivity.

While traditional software development practices, tools and

architectures have been shown not to be very suitable for

developing sCPS, several novel concepts and approaches have

been proposed to better address the inherent dynamicity of the

environment the sCPS usually operate in [1, 2, 3]. Out of these, a

very promising one is the concept of autonomic component

ensembles (i.e. dynamic cooperation groups of components),

elaborated in the ASCENS project [4] and embodied in the

ensemble-based component systems (EBCS) [5] – referred to as

contemporary EBCS further in the text.

Nevertheless, experience with case studies of sCPS designed

within the ASCENS project [4] and their realization in various

ensemble-based languages and component systems of sCPS

(jRESP [6] implementation of the SCEL [7] language, component

models Helena [8] and DEECo [5, 9]) has shown that the

expressive power of these novel approaches is limited.

Specifically there has been lack of the ability to capture mutual

awareness and complex coordination among components and

various limits imposed by domain constraints (very often

involving the limited ability and range of communication).

In addition, sCPS-related coordination problems are tackled in

other fields as well: Multi-agent and robotics approaches such as

the various coalition-based methods [10] often either disregard

dynamicity (in terms of anytime component failure), or are

tailored to particular problems (e.g. comprehensive solutions of

the RoboCup Rescue disaster management competition [11]) and

therefore lack generality and unified concepts. Promising

solutions for smart spaces such as A-3 [12] and its extension

SeSaMe [13] have emerged in the recent years, but depend

heavily on stable network infrastructure that is often absent in the

sCPS domain. All in all, these approaches suffer from similar

problems we have faced in the case studies.

1.2 Goals and Structure of the Paper
The primary goal of this paper is to present the lessons learned

from the ASCENS case studies and to propose novel concepts to

address the issues encountered. We do so in the context of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Permissions@acm.org.

ECSAW '15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia

© 2015 ACM. ISBN 978-1-4503-3393-1/15/09…$15.00

DOI: http://dx.doi.org/10.1145/2797433.2797450

autonomic component ensembles, which we consider as having a

strong potential in architecting sCPS.

The goal is reflected in the structure of the paper as follows:

Section 2 describes the ASCENS case studies and highlights

which of their features are hard to capture using the contemporary

EBCS concepts. Section 3 presents the key contribution of the

paper – it proposes novel concepts and rules for ensemble

formation; for this purpose it employs an extension of the DEECo

DSL specification language. Finally, Section 4 concludes the

paper.

2 LESSONS LEARNED FROM CASE

STUDIES

2.1 Cloud Infrastructure Management
The Cloud Infrastructure Management case study is focused on

load balancing in a cloud platform (physical machines vs.

workloads). The goal is to distribute the workloads in such a way

that the utilization of each machine is within given bounds while,

at the same time, the number of machines running is kept as small

as possible. In terms of contemporary EBCS concepts, it is natural

to model both the machines and workloads as components and the

assignment of a workload to a machine by participation in an

ensemble. A natural requirement is that membership in such

ensembles needs to be optimized in terms of the performance of

the cloud. Moreover this optimized membership assignment has to

be stable, since several factors negatively influence the

performance; specifically: (i) Once the decision is to switch off a

machine, it would require several minutes to boot up again if need

be; (ii) fluctuation of the workload between machines also

degrades the overall performance.

However, neither the optimized membership in the ensembles, nor

the cost of taking a decision can be directly modelled via the

contemporary EBCS concepts of component and ensemble. A key

reason is that at least a partial mutual awareness of ensembles is

required.

2.2 E-mobility
In this case study, the goal is to model smart cars attempting to

find a parking place in the streets of a busy city. To be able to

secure a parking slot, the cars have to book in advance. In order to

do so, there has to be a coordinating entity for each street. In this

case, it is assumed that a car already parked in a street serves as

the local coordinator of parking bookings; this removes the need

for deploying dedicated hardware components for this task.

Mapping to EBCS concepts is straightforward: the cars as

components, plus the cars in a specific street forming an

ensemble. It is however hard to capture the coordination

constraints related to the environment – e.g. permitting per street

only a single ensemble representing the parked cars among which

exactly one dynamically assumes the responsibility of parking

reservation coordination.

2.3 Search and Rescue
The Search and Rescue case study considers a geographical area

that has been afflicted by a disaster, such as an earthquake. It is

necessary to secure all the buildings in this area using a group of

robots. To make sure people in all buildings are found and

rescued as soon as possible, it is required that the robots after

being paradropped remain deployed to the buildings in a balanced

way. Modelling this case study via contemporary EBCS concepts

is straightforward at first sight – robots are represented as

components. Nevertheless, as to ensembles, it would appear

natural to group all robots in the area to allow coordination of the

whole rescue mission and further sub-partition the group to form

an ensemble per building (to facilitate coordination between

robots in the same buildings) and optimize ensembles in such a

way that all of them have “similar” number of robots. However,

such “fair” distribution of robots does not map easily to any of the

contemporary EBCS concepts.

2.4 Summary of Issues
As shown in Sections 2.1, 2.2, and 2.3, the component and

ensemble concepts of contemporary EBCS (as featured by

DEECo [5, 9]) are insufficient to explicitly model specifically the

following:

a) To capture systems that are inherently hierarchically

structured and/or organized (Sect. 2.3).

b) Associating the existing ensemble instances with

domain entities (Sect. 2.2, 2.3), consequently limiting

the number of the instances.

c) To dynamically select particular members in order to

optimize functionality of the system in terms of

achieving a fair, stable, and cost-reducing distribution

of particular components among several ensembles

(Sect. 2.1, 2.3).

d) To represent the cost of making a bad coordination

decision (Sect. 2.1).

It is of course possible to find a way of getting around these

insufficiencies in the application code and/or by introducing a

specific component(s) maintaining the global knowledge required

for coordinating activities of other components. However,

formation of ensembles guided by complex application-specific

constraints appears to be a very common requirement in sCPS. It

would be therefore advantageous to define these constraints

declaratively while designing an architectural model and let the

runtime framework form ensembles based on these constraints.

Any runtime implementation should, however, adhere to the

principles already contained in contemporary EBCS – loose

coupling, decentralized execution and opportunistic knowledge

propagation. All in all, what is required is to enrich the

contemporary EBCS concepts by high-level architectural

constraints (such as contextually limiting the number of members

of an ensemble and of instances of an ensemble type). Our goal

can therefore be seen as an effort to bridge the gap between high-

level declarative system design and decentralized sCPS-suitable

implementation.

3 INTELLIGENT ENSEMBLES:

CONCEPTS INTRODUCTION
In this section, we elaborate on the example stemming from the

Search and Rescue case study (Sect. 2.3). We outline how a high-

level architectural description and enriched semantics of

ensembles (intelligent ensembles further in the text) can look like.

Specifically, we outline a solution to the issues (a) – (c) of Section

2.4. We do so by presenting it in an extension of the EBCS DSL

designed for the DEECo (Figure 1). The issue (d) along with

exact formal semantics and low-level realization of the solution

shapes a promising future work.

Below we focus on the example in Figure 1. Here every rescue

robot is an instance of the component type Robot. It features the

role r_Searcher, which defines the knowledge of the robot

obtained from or shared with other robots. The role thus acts as an

interface to the component’s knowledge.

All the Robot components have the same areaId, which identifies

the deployment area and s_buildings, which is the set of

buildings in the area to be explored. Further, every robot

maintains information on its geographical position (represented in

the knowledge of Robot).

Robots are grouped into ensembles, the instances of which are

dynamically created by the runtime framework. The instance of

the e_Area ensemble type represents the geographical area where

a disaster took place and comprises all robots in the area. The

e_SearchGroup ensemble type instances (instantiated by the

runtime framework per building in the area) represent the groups

of robots deployed to specific buildings in the area; assuming

enough robots are available.

Robots in an ensemble are subject to knowledge exchange (lines

41 and 56) which is a form of component asynchronous

communication done periodically [5].

Hierarchical structuring. To reflect the hierarchy

area ‒ buildings, we introduce hierarchy of ensembles (enhancing

the flat ensemble architecture of contemporary EBCS).

Specifically, an instance of e_Area contains (potentially) multiple

instances of e_SearchGroup.

Syntactically, nesting is introduced in the ensemble type

definition by the constructs starting with the keywords child of
(line 47) and parent of (line 26). The entities of the parent

ensemble are accessible in a child ensemble via composed names

(dot notation, e.g. line 46).

Creating an instance of a parent ensemble type implies creation of

instances of its child type(s), the number of which is determined

by the domain of the child type identifier. For example, creating

an instance of e_Area implies instantiating the set es_groups.

Associating ensembles with domain entities. Inherent to the

example is the need to represent the communication of the robots

deployed to a particular building (not to explicitly represent the

building itself as a component). This means that we should model

building as domain concept at the architectural level by

associating it with an ensemble representing the communication.

To do so, we propose the id construct, which defines the domain

of corresponding ensemble instances. For example, the

specification on line 24 means that the identification of an

instance of e_Area is a string and its actual valuation is

determined as the areaId of the robots deployed to the area.

Advantageously, the cardinality of the identifier domain (and

range of its initial values) determines also the maximum number

of instances of the ensemble type. While on the line 24 the

valuation of the identifier is explicitly defined, on the line 46, the

valuation is determined by the underlying framework for the

domain e_Area.buildings.id. Again, this also determines the

maximum number of instances of the ensemble type

e_SearchGroup.

Optimized membership. An important issue of the Search and

Rescue example is to deploy robots to buildings in an “optimal”

manner, here based on geographical distance to a building. To

address this issue, we reuse the concepts of membership constraint

of contemporary EBCS and propose to combine it with the

concepts of dynamic role cardinalities and ensemble fitness

function. In this proposition, membership of a component in an

ensemble is determined by a) its binding to a role of the same type

offered by the ensemble, b) satisfaction of the ensemble

constraint, and c) decision of the fitness function specified in the

ensemble. These features of the ensemble are specified as follows:

Roles – As the rule of thumb, at most one component can be

bound to a specific role of the ensemble. Syntactically, the roles

an ensemble offers are specified as role sets. Such a specification

is introduced by the keyword roles followed by role set

definitions, each consisting of (i) identifier of the role set, (ii) role

set cardinality, and (iii) type of role. For example on the line 36

the role set rs_allSearchers has the cardinality [1..*] (no

1 knowledge type Coord
2 lat: double
3 lon: double
4 end Coord
5
6 knowledge type Building
7 id: string
8 where: Coord
9 end Building
10
11 component role r_Searcher
12 // role/interface of a robot in the case study;
13 areaId : string
14 s_buildings : Building[]
15 position : Coord
16 end r_Searcher
17
18 component type Robot features r_Searcher
19 . . .
20 end Robot
21
22 ensemble type e_Area
23 // representing the local area where a disaster took

place; single instance per local area
24 id areaId : string :=
 one_of(rs_allSearchers.areaId)
25 // for collections, dot expresses projection
26 parent of es_groups [1..*]: e_SearchGroup
27 alias
28 buildings = one_of(rs_allSearchers.buildings)
29 N = count(es_groups)
30 M = sum(count(es_groups.rs_gsearchers))
31 ratio = floor(M/N)
32 // assuming all r_Searcher.buildings are equal
33
34 membership
35 roles
36 rs_allSearchers [1..*]: r_Searcher
37 constraints
38 allEqual(rs_allSearchers.areaId)
39 fitness
40 sum(es_groups.fitness)
41 knowledge exchange . . .
42 end e_Area
43
44 ensemble type e_SearchGroup
45 // represents the robot group assigned to a specific

building; an instance per building
46 id structureId : e_Area.buildings.id
47 child of e_Area
48 alias
49 min_members = max(e_Area.ratio – 2, 1)
50 max_members = e_Area.ratio + 2
51 membership
52 roles
53 exclusive /* membership in at most one child
 ensemble permitted via a role in rs_gsearchers */
 rs_gsearchers [min_members .. max_members]
 : e_Area.rs_allSearchers
54 fitness
55 -sum(distance(rs_gsearchers.position,

 e_Area.s_buildings.where))
56 knowledge exchange
57 // robots exchange information on their position
58 ...
59 end e_SearchGroup

Figure 1: Example of proposed concepts.

upper bound) and each role in the set is of type r_Searcher.

More interestingly, the role set rs_gsearchers (line 53) has the

cardinality [min_members .. max_members], the bounds of

which are dynamic as determined by the expressions on lines 49

and 50. Furthermore, the role type specification refers to the

parent role set e_Area.rs_allSearchers – this indicates that a

member component to be bound to the role in rs_gsearchers

also has to be bound to a role in e_Area.rs_allSearchers, i.e.

to be also a member of the parent ensemble (the type of the latter

also defines the type of the former).

Constraints – A constraint is a predicate over elements of role

set(s) expressing a necessary condition for a component to

become a member of the ensemble. For example

allEqual(rs_allSearchers.areaId) means that the areaId

value of the components bound to the roles in rs_allSearchers

have to be equal (line 38); i.e. all the robot components in this

ensemble have to represent robots deployed to the same area.

Fitness Function – A fitness function captures a soft optimization

rule, such as the requirement of a fair robot/building distribution.

In other words it is a measure representing how well a system is

optimized. Syntactically, it is denoted by the keyword fitness

followed by a function definition. On the lines 54-55 the fitness

function evaluates the distances of the robots from the buildings

in an area; the smaller the result, the better. Importantly, since this

is done dynamically and the number of available roles in a role set

may be limited, a better component candidate can be found to

replace a member component (the “worse” one) in the ensemble.

4 CONCLUSION
In this paper we have presented intelligent ensembles, the

inception of which has been motivated by the difficulties

encountered when modeling several case studies via the

contemporary EBCS concepts. We have outlined how to address

the issues (a)-(c). As for issue (d), this requires further extension

of the specification to include the cost or risk implied by a wrong

decision and change of the decision.

We are currently working on a prototype of a runtime framework

supporting the new concepts (enhancing the JDEECo [14]

implementation of DEECo). The primary challenge is finding a

form of coordination between ensembles without violating the

decentralized nature of DEECo that makes it viable for sCPS

applications. A promising direction in this respect are the

approaches taking advantage of the “continuous” nature of sCPS,

in which a temporary flaw in ensemble forming does not typically

have a critical impact on the system (nevertheless reducing its

performance). Of course, this is closely related to the cost and risk

of a wrong decision, and to the cost and latency of

communication, which in sCPS (that often employ mobile ad-hoc

networks) radically grows with geographical distance.

To conclude, we are of the opinion that the newly introduced

concepts increase the expressive power of contemporary EBCS,

and even though more case studies are needed and full

implementation support has to be elaborated, this research

direction, scientifically very promising, is of high importance.

5 ACKNOWLEDGEMENT
The work on this paper has been partially supported by the

Charles University Grant Agency project No. 390615 and

partially supported by Charles University institutional funding

SVV-2015-260222.

6 REFERENCES
[1] Hölzl M., Rauschmayer A., Wirsing M. 2008. Software

Engineering for Ensembles. In Software-Intensive Systems

and New Computing Paradigms, pp. 45–63. LNCS 5380.

[2] Morin B., Fleurey F., Barais O. 2015. Taming Heterogeneity

and Distribution in sCPS. Proceedings of SEsCPS 2015,

ACM, Italy.

[3] Ruchkin I., Schmerl B., Garlan D. 2015. Architectural

Abstractions for Hybrid Programs. Proceedings of CBSE

2015, ACM, pp. 65-74.

[4] Autonomic Service Component Ensembles (ASCENS).

Project, Framework Programme 7. Homepage: http://ascens-

ist.edu. Accessed on 2015/05/20.

[5] Bureš T., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit

M., Plášil F. 2013. DEECo - an Ensemble-Based Component

System. Proceedings of CBSE 2013, ACM, pp. 81-90.

[6] Java Runtime Environment for SCEL Programs (jRESP).

Project, developed as part of the ASCENS project.

Homepage: http://jresp.sourceforge.net/. Accessed on

2015/06/02.

[7] De Nicola R., Ferrari G., Loreti M., Pugliese R. 2013. A

Language-Based Approach to Autonomic Computing. In

LNCS 7542. Springer Berlin Heidelberg.

[8] Hennicker R., Klarl A. 2014. Foundations for Ensemble

Modeling – The Helena Approach. In Specification, Algebra,

and Software, pp. 359–81. LNCS 8373. Springer Berlin

Heidelberg.

[9] Keznikl J., Bureš T., Plášil F., Kit M. 2012. Towards

Dependable Emergent Ensembles of Components: The

DEECo Component Model. Proceedings of WICSA/ECSA

2012, Helsinki, Finland, pp. 249-252, IEEE CS.

[10] Vig, L., Adams, J. A. Multi-Robot Coalition Formation.

2006. IEEE Transactions on Robotics 22, no. 4, pp. 637–

649.

[11] Parker J., Nunes E., Godoy J., Gini M. 2015. Exploiting

Spatial Locality and Heterogeneity of Agents for Search and

Rescue Teamwork. Journal of Field Robotics.

[12] Baresi, L., Guinea S. 2011. A-3: An Architectural Style for

Coordinating Distributed Components. In 2011 9th Working

IEEE/IFIP Conference on Software Architecture (WICSA),

pp. 161–70.

[13] Baresi L., Guinea S., Shahzada A. 2013. SeSaMe: Towards a

Semantic Self Adaptive Middleware for Smart Spaces. In

Engineering Multi-Agent Systems, pp. 1–18. LNCS 8245.

Springer Berlin Heidelberg.

[14] Java Dependable Emergent Ensembles of Components

(JDEECo). Project, developed as part of the ASCENS

project. Homepage: https://github.com/d3scomp/JDEECo.

Accessed on 2015/06/08

http://ascens-ist.edu/
http://ascens-ist.edu/
http://jresp.sourceforge.net/
https://github.com/d3scomp/JDEECo

