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ABSTRACT 

Recently, several ensemble-based component models have been 

created to address the dynamicity and complexity of designing 

cyber-physical systems. Experience in applying these models to 

actual case studies has shown that there are still scenarios in 

distributed organization that are hard to capture by utilizing only 

the concepts of these component models. In this paper, we present 

a summary of issues encountered, based on the analysis of 

selected case studies. We propose new concepts that build on 

those contained in ensemble-based models. In particular, we 

introduce the ideas of ensemble nesting, dynamic role 

cardinalities and ensemble fitness. These concepts and their 

support in the runtime framework aim at serving as a bridge 

between high-level ensemble formation rules and low-level 

decentralized implementation. These concepts are illustrated on 

one of the case studies, demonstrating a domain specific language 

based on that used in the DEECo component model. 

Categories and Subject Descriptors 

D.2.11 [Software Engineering]: Software Architectures – 

Domain-specific architectures, Patterns; I.2.11 [Artificial 

Intelligence]: Distributed Artificial Intelligence – Intelligent 

agents. 

General Terms 

Algorithms, Design, Languages. 

Keywords 

Distributed coordination, architectural adaptation, ensemble-

based component systems, component model, emergent 

architecture, component ensembles, autonomic systems. 

1 INTRODUCTION 

1.1 Motivation 
Owing to technological and research advances, as well as the 

increasing availability of connectivity and cheap computer 

components on the market, a new kind of distributed systems has 

emerged in the recent years. These systems are collectively 

referred to as cyber-physical systems (CPS) and are a 

manifestation of the Internet-of-things (IoT) initiative. Cyber-

physical systems usually consist of a set of autonomous 

components that, even though capable of working in isolation, 

achieve their full potential by using network communication to 

cooperate with each other to fulfill a common goal. As evidenced 

by various industry-driven use cases and research calls, CPS are 

also of interest to the industry. In recent years, this interest is 

especially growing in the area of “smart CPS” (sCPS), which are 

CPS with high-level of distribution, coordination, autonomy, and 

self-adaptivity.  

While traditional software development practices, tools and 

architectures have been shown not to be very suitable for 

developing sCPS, several novel concepts and approaches have 

been proposed to better address the inherent dynamicity of the 

environment the sCPS usually operate in [1, 2, 3]. Out of these, a 

very promising one is the concept of autonomic component 

ensembles (i.e. dynamic cooperation groups of components), 

elaborated in the ASCENS project [4] and embodied in the 

ensemble-based component systems (EBCS) [5] – referred to as 

contemporary EBCS further in the text. 

Nevertheless, experience with case studies of sCPS designed 

within the ASCENS project [4] and their realization in various 

ensemble-based languages and component systems of sCPS 

(jRESP [6] implementation of the SCEL [7] language, component 

models Helena [8] and DEECo [5, 9]) has shown that the 

expressive power of these novel approaches is limited. 

Specifically there has been lack of the ability to capture mutual 

awareness and complex coordination among components and 

various limits imposed by domain constraints (very often 

involving the limited ability and range of communication).  

In addition, sCPS-related coordination problems are tackled in 

other fields as well: Multi-agent and robotics approaches such as 

the various coalition-based methods [10] often either disregard 

dynamicity (in terms of anytime component failure), or are 

tailored to particular problems (e.g. comprehensive solutions of 

the RoboCup Rescue disaster management competition [11]) and 

therefore lack generality and unified concepts. Promising 

solutions for smart spaces such as A-3 [12] and its extension 

SeSaMe [13] have emerged in the recent years, but depend 

heavily on stable network infrastructure that is often absent in the 

sCPS domain. All in all, these approaches suffer from similar 

problems we have faced in the case studies. 

1.2 Goals and Structure of the Paper 
The primary goal of this paper is to present the lessons learned 

from the ASCENS case studies and to propose novel concepts to 

address the issues encountered. We do so in the context of 
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autonomic component ensembles, which we consider as having a 

strong potential in architecting sCPS. 

The goal is reflected in the structure of the paper as follows: 

Section 2 describes the ASCENS case studies and highlights 

which of their features are hard to capture using the contemporary 

EBCS concepts. Section 3 presents the key contribution of the 

paper – it proposes novel concepts and rules for ensemble 

formation; for this purpose it employs an extension of the DEECo 

DSL specification language. Finally, Section 4 concludes the 

paper. 

2 LESSONS LEARNED FROM CASE 

STUDIES 

2.1 Cloud Infrastructure Management 
The Cloud Infrastructure Management case study is focused on 

load balancing in a cloud platform (physical machines vs. 

workloads). The goal is to distribute the workloads in such a way 

that the utilization of each machine is within given bounds while, 

at the same time, the number of machines running is kept as small 

as possible. In terms of contemporary EBCS concepts, it is natural 

to model both the machines and workloads as components and the 

assignment of a workload to a machine by participation in an 

ensemble. A natural requirement is that membership in such 

ensembles needs to be optimized in terms of the performance of 

the cloud. Moreover this optimized membership assignment has to 

be stable, since several factors negatively influence the 

performance; specifically: (i) Once the decision is to switch off a 

machine, it would require several minutes to boot up again if need 

be; (ii) fluctuation of the workload between machines also 

degrades the overall performance.  

However, neither the optimized membership in the ensembles, nor 

the cost of taking a decision can be directly modelled via the 

contemporary EBCS concepts of component and ensemble. A key 

reason is that at least a partial mutual awareness of ensembles is 

required. 

2.2 E-mobility 
In this case study, the goal is to model smart cars attempting to 

find a parking place in the streets of a busy city. To be able to 

secure a parking slot, the cars have to book in advance. In order to 

do so, there has to be a coordinating entity for each street. In this 

case, it is assumed that a car already parked in a street serves as 

the local coordinator of parking bookings; this removes the need 

for deploying dedicated hardware components for this task. 

Mapping to EBCS concepts is straightforward: the cars as 

components, plus the cars in a specific street forming an 

ensemble. It is however hard to capture the coordination 

constraints related to the environment – e.g. permitting per street 

only a single ensemble representing the parked cars among which 

exactly one dynamically assumes the responsibility of parking 

reservation coordination. 

2.3 Search and Rescue 
The Search and Rescue case study considers a geographical area 

that has been afflicted by a disaster, such as an earthquake. It is 

necessary to secure all the buildings in this area using a group of 

robots. To make sure people in all buildings are found and 

rescued as soon as possible, it is required that the robots after 

being paradropped remain deployed to the buildings in a balanced 

way. Modelling this case study via contemporary EBCS concepts 

is straightforward at first sight – robots are represented as 

components. Nevertheless, as to ensembles, it would appear 

natural to group all robots in the area to allow coordination of the 

whole rescue mission and further sub-partition the group to form 

an ensemble per building (to facilitate coordination between 

robots in the same buildings) and optimize ensembles in such a 

way that all of them have “similar” number of robots. However, 

such “fair” distribution of robots does not map easily to any of the 

contemporary EBCS concepts. 

2.4 Summary of Issues 
As shown in Sections 2.1, 2.2, and 2.3, the component and 

ensemble concepts of contemporary EBCS (as featured by 

DEECo [5, 9]) are insufficient to explicitly model specifically the 

following: 

a) To capture systems that are inherently hierarchically 

structured and/or organized (Sect. 2.3). 

b) Associating the existing ensemble instances with 

domain entities (Sect. 2.2, 2.3), consequently limiting 

the number of the instances. 

c) To dynamically select particular members in order to 

optimize functionality of the system in terms of 

achieving a fair, stable, and cost-reducing distribution 

of particular components among several ensembles 

(Sect. 2.1, 2.3). 

d) To represent the cost of making a bad coordination 

decision (Sect. 2.1). 

It is of course possible to find a way of getting around these 

insufficiencies in the application code and/or by introducing a 

specific component(s) maintaining the global knowledge required 

for coordinating activities of other components. However, 

formation of ensembles guided by complex application-specific 

constraints appears to be a very common requirement in sCPS. It 

would be therefore advantageous to define these constraints 

declaratively while designing an architectural model and let the 

runtime framework form ensembles based on these constraints. 

Any runtime implementation should, however, adhere to the 

principles already contained in contemporary EBCS – loose 

coupling, decentralized execution and opportunistic knowledge 

propagation. All in all, what is required is to enrich the 

contemporary EBCS concepts by high-level architectural 

constraints (such as contextually limiting the number of members 

of an ensemble and of instances of an ensemble type). Our goal 

can therefore be seen as an effort to bridge the gap between high-

level declarative system design and decentralized sCPS-suitable 

implementation. 

3 INTELLIGENT ENSEMBLES: 

CONCEPTS INTRODUCTION 
In this section, we elaborate on the example stemming from the 

Search and Rescue case study (Sect. 2.3). We outline how a high-

level architectural description and enriched semantics of 

ensembles (intelligent ensembles further in the text) can look like. 

Specifically, we outline a solution to the issues (a) – (c) of Section 

2.4. We do so by presenting it in an extension of the EBCS DSL 

designed for the DEECo (Figure 1). The issue (d) along with 

exact formal semantics and low-level realization of the solution 

shapes a promising future work. 

Below we focus on the example in Figure 1. Here every rescue 

robot is an instance of the component type Robot. It features the 

role r_Searcher, which defines the knowledge of the robot 



obtained from or shared with other robots. The role thus acts as an 

interface to the component’s knowledge.  

All the Robot components have the same areaId, which identifies 

the deployment area and s_buildings, which is the set of 

buildings in the area to be explored. Further, every robot 

maintains information on its geographical position (represented in 

the knowledge of Robot).  

Robots are grouped into ensembles, the instances of which are 

dynamically created by the runtime framework. The instance of 

the e_Area ensemble type represents the geographical area where 

a disaster took place and comprises all robots in the area. The 

e_SearchGroup ensemble type instances (instantiated by the 

runtime framework per building in the area) represent the groups 

of robots deployed to specific buildings in the area; assuming 

enough robots are available. 

Robots in an ensemble are subject to knowledge exchange (lines 

41 and 56) which is a form of component asynchronous 

communication done periodically [5].  

Hierarchical structuring. To reflect the hierarchy 

area ‒ buildings, we introduce hierarchy of ensembles (enhancing 

the flat ensemble architecture of contemporary EBCS). 

Specifically, an instance of e_Area contains (potentially) multiple 

instances of e_SearchGroup.  

Syntactically, nesting is introduced in the ensemble type 

definition by the constructs starting with the keywords child of 
(line 47) and parent of (line 26). The entities of the parent 

ensemble are accessible in a child ensemble via composed names 

(dot notation, e.g. line 46). 

Creating an instance of a parent ensemble type implies creation of 

instances of its child type(s), the number of which is determined 

by the domain of the child type identifier. For example, creating 

an instance of e_Area implies instantiating the set es_groups.  

Associating ensembles with domain entities. Inherent to the 

example is the need to represent the communication of the robots 

deployed to a particular building (not to explicitly represent the 

building itself as a component). This means that we should model 

building as domain concept at the architectural level by 

associating it with an ensemble representing the communication. 

To do so, we propose the id construct, which defines the domain 

of corresponding ensemble instances. For example, the 

specification on line 24 means that the identification of an 

instance of e_Area is a string and its actual valuation is 

determined as the areaId of the robots deployed to the area. 

Advantageously, the cardinality of the identifier domain (and 

range of its initial values) determines also the maximum number 

of instances of the ensemble type. While on the line 24 the 

valuation of the identifier is explicitly defined, on the line 46, the 

valuation is determined by the underlying framework for the 

domain e_Area.buildings.id. Again, this also determines the 

maximum number of instances of the ensemble type 

e_SearchGroup. 

Optimized membership. An important issue of the Search and 

Rescue example is to deploy robots to buildings in an “optimal” 

manner, here based on geographical distance to a building. To 

address this issue, we reuse the concepts of membership constraint 

of contemporary EBCS and propose to combine it with the 

concepts of dynamic role cardinalities and ensemble fitness 

function. In this proposition, membership of a component in an 

ensemble is determined by a) its binding to a role of the same type 

offered by the ensemble, b) satisfaction of the ensemble 

constraint, and c) decision of the fitness function specified in the 

ensemble. These features of the ensemble are specified as follows: 

Roles – As the rule of thumb, at most one component can be 

bound to a specific role of the ensemble. Syntactically, the roles 

an ensemble offers are specified as role sets. Such a specification 

is introduced by the keyword roles followed by role set 

definitions, each consisting of (i) identifier of the role set, (ii) role 

set cardinality, and (iii) type of role. For example on the line 36 

the role set rs_allSearchers has the cardinality [1..*] (no 

1 knowledge type Coord 
2   lat: double 
3   lon: double 
4 end Coord 
5  
6 knowledge type Building 
7   id: string 
8   where: Coord 
9 end Building 
10  
11 component role r_Searcher 
12 // role/interface of a robot in the case study;  
13   areaId : string 
14   s_buildings : Building[] 
15   position : Coord 
16 end r_Searcher 
17  
18 component type Robot features r_Searcher 
19 . . . 
20 end Robot 
21  
22 ensemble type e_Area 
23 // representing the local area where a disaster took 

place; single instance per local area 
24   id areaId : string := 
                    one_of(rs_allSearchers.areaId) 
25 // for collections, dot expresses projection 
26   parent of es_groups [1..*]: e_SearchGroup  
27   alias 
28     buildings = one_of(rs_allSearchers.buildings) 
29     N = count(es_groups) 
30     M = sum(count(es_groups.rs_gsearchers)) 
31     ratio = floor(M/N) 
32 // assuming all r_Searcher.buildings are equal 
33    
34   membership 
35     roles     
36      rs_allSearchers [1..*]: r_Searcher 
37     constraints 
38      allEqual(rs_allSearchers.areaId) 
39     fitness 
40      sum(es_groups.fitness)   
41   knowledge exchange . . . 
42 end e_Area 
43  
44 ensemble type e_SearchGroup  
45 // represents the robot group assigned to a specific 

building; an instance per building 
46   id structureId : e_Area.buildings.id 
47   child of e_Area 
48   alias  
49     min_members = max(e_Area.ratio – 2, 1) 
50     max_members = e_Area.ratio + 2 
51   membership 
52     roles 
53       exclusive /* membership in at most one child 
       ensemble permitted via a role in rs_gsearchers */ 
           rs_gsearchers [min_members .. max_members] 
                               : e_Area.rs_allSearchers  
54       fitness 
55         -sum(distance(rs_gsearchers.position,  

      e_Area.s_buildings.where)) 
56   knowledge exchange 
57 // robots exchange information on their position 
58 ... 
59 end e_SearchGroup 

Figure 1: Example of proposed concepts. 



upper bound) and each role in the set is of type r_Searcher. 

More interestingly, the role set rs_gsearchers (line 53) has the 

cardinality [min_members .. max_members], the bounds of 

which are dynamic as determined by the expressions on lines 49 

and 50. Furthermore, the role type specification refers to the 

parent role set e_Area.rs_allSearchers – this indicates that a 

member component to be bound to the role in rs_gsearchers 

also has to be bound to a role in e_Area.rs_allSearchers, i.e. 

to be also a member of the parent ensemble (the type of the latter 

also defines the type of the former). 

Constraints – A constraint is a predicate over elements of role 

set(s) expressing a necessary condition for a component to 

become a member of the ensemble. For example 

allEqual(rs_allSearchers.areaId) means that the areaId 

value of the components bound to the roles in rs_allSearchers 

have to be equal (line 38); i.e. all the robot components in this 

ensemble have to represent robots deployed to the same area. 

Fitness Function – A fitness function captures a soft optimization 

rule, such as the requirement of a fair robot/building distribution. 

In other words it is a measure representing how well a system is 

optimized. Syntactically, it is denoted by the keyword fitness 

followed by a function definition. On the lines 54-55 the fitness 

function evaluates the distances of the robots from the buildings 

in an area; the smaller the result, the better. Importantly, since this 

is done dynamically and the number of available roles in a role set 

may be limited, a better component candidate can be found to 

replace a member component (the “worse” one) in the ensemble.  

4 CONCLUSION 
In this paper we have presented intelligent ensembles, the 

inception of which has been motivated by the difficulties 

encountered when modeling several case studies via the 

contemporary EBCS concepts. We have outlined how to address 

the issues (a)-(c). As for issue (d), this requires further extension 

of the specification to include the cost or risk implied by a wrong 

decision and change of the decision.  

We are currently working on a prototype of a runtime framework 

supporting the new concepts (enhancing the JDEECo [14] 

implementation of DEECo). The primary challenge is finding a 

form of coordination between ensembles without violating the 

decentralized nature of DEECo that makes it viable for sCPS 

applications. A promising direction in this respect are the 

approaches taking advantage of the “continuous” nature of sCPS, 

in which a temporary flaw in ensemble forming does not typically 

have a critical impact on the system (nevertheless reducing its 

performance). Of course, this is closely related to the cost and risk 

of a wrong decision, and to the cost and latency of 

communication, which in sCPS (that often employ mobile ad-hoc 

networks) radically grows with geographical distance. 

To conclude, we are of the opinion that the newly introduced 

concepts increase the expressive power of contemporary EBCS, 

and even though more case studies are needed and full 

implementation support has to be elaborated, this research 

direction, scientifically very promising, is of high importance. 
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